Rényi entropy power inequality and a reverse
نویسنده
چکیده
This paper is twofold. In the first part, we derive an improvement of the Rényi Entropy Power Inequality (EPI) recently obtained by Bobkov and Marsiglietti [10]. The proof largely follows Lieb’s [22] approach of employing Young’s inequality. In the second part, we prove a reverse Rényi EPI, that verifies a conjecture proposed in [4, 23] in two cases. Connections with various p-th mean bodies in convex geometry are also explored.
منابع مشابه
On the entropy power inequality for the Rényi entropy of order [0, 1]
Using a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang, the authors are able to derive a Rényi entropy power inequality for log-concave random vectors when Rényi parameters belong to (0, 1). Furthermore, the estimates are shown to be somewhat sharp.
متن کاملForward and Reverse Entropy Power Inequalities in Convex Geometry
The entropy power inequality, which plays a fundamental role in information theory and probability, may be seen as an analogue of the Brunn-Minkowski inequality. Motivated by this connection to Convex Geometry, we survey various recent developments on forward and reverse entropy power inequalities not just for the Shannon-Boltzmann entropy but also more generally for Rényi entropy. In the proce...
متن کاملEntropy Power Inequality for the Rényi Entropy
The classical entropy power inequality is extended to the Rényi entropy. We also discuss the question of the existence of the entropy for sums of independent random variables.
متن کاملVariants of Entropy Power Inequality
An extension of the entropy power inequality to the form N r (X +Y ) ≥ N r (X) +N r (Y ) with arbitrary independent summands X and Y in R is obtained for the Rényi entropy and powers α ≥ (r + 1)/2.
متن کاملA Preferred Definition of Conditional Rényi Entropy
The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1704.02634 شماره
صفحات -
تاریخ انتشار 2017